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Almost all compilers for languages that use procedures, functions, or methods as units of              
user-defined actions manage at least part of their run-time memory as a stack. Each time a                
procedure1 is called, space for its local variables is pushed onto a stack, and when the procedure                
terminates, that space is popped off the stack. As we shall see, this arrangement not only allows                 
space to be shared by procedure calls whose durations do not overlap in time, but it allows us to                   
compile code for a procedure in such a way that the relative addresses of its nonlocal variables                 
are always the same, regardless of the sequence of procedure calls. 

  1. Activation Trees 

 Stack allocation would not be feasible if procedure calls, or activations of pro-cedures, did not             
nest in time. The following example illustrates nesting of procedure calls. 

E x a m p l e 7 . 1 : Figure 7.2 contains a sketch of a program that reads nine inte-gers into an                         
array a and sorts them using the recursive quicksort algorithm. 

  

The main function has three tasks. It calls readArray, sets the sentinels, and then            
calls quicksort on the entire data array. Figure 7.3 suggests a sequence of calls that might result               
from an execution of the program. In this execution, the call to partition(l,9) returns 4,             
so a[l] through a[3] hold elements less than its chosen separator value v, while the larger            
elements are in a [5] through a [9]. • 

  

In this example, as is true in general, procedure activations are nested in time. If an activation of                  
procedure p calls procedure q, then that activation of q must end before the activation of p can          
end. There are three common cases: 

  

1. The activation of q terminates normally. Then in essentially any language, control resumes            
just after the point of p at which the call to q was made. 

  

The activation of q, or some procedure q called, either directly or indi-rectly, aborts; i.e., it            
becomes impossible for execution to continue. In that case, p ends simultaneously with q. 



 
 

3. The activation of q terminates because of an exception that q cannot han-dle. Procedure p may               
handle the exception, in which case the activation of q has terminated while the activation             
of p continues, although not nec-essarily from the point at which the call to q was made.             
If p cannot handle the exception, then this activation of p terminates at the same time as the              
activation of q, and presumably the exception will be handled by some other open activation of a              
procedure. 

We therefore can represent the activations of procedures during the running of an entire program               
by a tree, called an activation tree. Each node corresponds to one activation, and the root is the                  
activation of the "main" procedure that initiates execution of the program. At a node for an                
activation of procedure p, the children correspond to activations of the procedures called by this               
activation of p. We show these activations in the order that they are called, from left to right.                  
Notice that one child must finish before the activation to its right can begin. 

  

 

 



 

A Version of Quicksort  

The sketch of a quicksort program in Fig. 7.2 uses two auxiliary            
functions readArray and partition. The function readArray is used only to load the data into the         
array a. The first and last elements of a are not used for data, but rather for "sentinels" set in the                 
main function. We assume a[0] is set to a value lower than any possible data value, and a[10] is                 
set to a value higher than any data value. 

  

The function partition divides a portion of the array, delimited by the arguments m and n, so the              
low elements of a[m] through a[n] are at the beginning, and the high elements are at the end,              
although neither group is necessarily in sorted order. We shall not go into the              
way partition works, except that it may rely on the existence of the sentinels. One possible              
algorithm for partition is suggested by the more detailed code in Fig. 9.1. 

  

Recursive procedure  quicksort first decides if it needs to sort more than one element of the               
array. Note that one element is always "sorted," so quicksort has nothing to do in that case. If                  
there are elements to sort, quicksort first calls partition, which returns an index i to separate the                 
low and high elements. These two groups of elements are then sorted by two recursive calls to                 
quicksort. 

E x a m p l e 7 . 2 : One possible activation tree that completes the sequence of calls and returns                       
suggested in Fig. 7.3 is shown in Fig. 7.4. Functions are represented by the first letters of their                  
names. Remember that this tree is only one possibility, since the arguments of subsequent calls,               
and also the number of calls along any branch is influenced by the values returned by partition. • 

  

The use of a run-time stack is enabled by several useful relationships between the activation tree                
and the behavior of the program: 

  

            The sequence of procedure calls corresponds to a preorder traversal of the activation tree. 

  

            The sequence of returns corresponds to a postorder traversal of the acti-vation tree. 

  

  

Suppose that control lies within a particular activation of some procedure, corresponding to a              
node N of the activation tree. Then the activations that are currently open (live) are those that             
correspond to node N and its ancestors. The order in which these activations were called is the               
order in which they appear along the path to N, starting at the root, and they will return in the                  
reverse of that order. 



 

 

2. Activation Records 

  

Procedure calls and returns are usually managed by a run-time stack called the control             
stack. Each live activation has an activation record (sometimes called a frame) on the control          
stack, with the root of the activation tree at the bottom, and the entire sequence of activation                
records on the stack corresponding to the path in the activation tree to the activation where                
control currently resides. The latter activation has its record at the top of the stack. 

  

  

Example 7 . 3 : If control is currently in the activation 0(2,3) of the tree of Fig. 7.4, then the                   
activation record for q(2,3) is at the top of the control stack. Just below is the activation record                 



for 0(1,3), the parent of 0(2,3) in the tree. Below that is the activation record 0(1,9), and at the                   
bottom is the activation record for m, the main function and root of the activation tree. 

We shall conventionally draw control stacks with the bottom of the stack higher than the top, so                 
the elements in an activation record that appear lowest on the page are actually closest to the top                  
of the stack. 

  

The contents of activation records vary with the language being imple-mented. Here is a list of                
the kinds of data that might appear in an activation record (see Fig. 7.5 for a summary and                  
possible order for these elements): 

  

Actual parameters 

  

Returned values 

  

Control link 

  

Access link 

  

Saved machine status 

  

Local data 

  

Temporaries 

  



  

Figure 7.5:  A general activation record 

  

            Temporary values, such as those arising from the evaluation of expres-sions, in cases             
where those temporaries cannot be held in registers. 

  

            Local data belonging to the procedure whose activation record this is. 

  

            A saved machine status, with information about the state of the machine just before the               
call to the procedure. This information typically includes the return address (value of the            
program counter, to which the called procedure must return) and the contents of registers that               
were used by the calling procedure and that must be restored when the return occurs. 

  

            An "access link" may be needed to locate data needed by the called proce-dure but found                
elsewhere, e.g., in another activation record. Access links are discussed in Section 7.3.5. 

  

5. A  control link, pointing to the activation record of the caller. 

  

            Space for the return value of the called function, if any. Again, not all called procedures                
return a value, and if one does, we may prefer to place that value in a register for efficiency. 

  

The actual parameters used by the calling procedure. Commonly, these values are not placed in               
the activation record but rather in registers, when possible, for greater efficiency. However, we              
show a space for them to be completely general. 

  



Example 7.4 : Figure 7.6 shows snapshots of the run-time stack as control flows through the                
activation tree of Fig. 7.4. Dashed lines in the partial trees go to activations that have ended.                 
Since array a is global, space is allocated for it before execution begins with an activation of                 
procedure main, as shown in Fig. 7.6(a). 

 

When control reaches the first call in the body of main, procedure r is activated, and its               
activation record is pushed onto the stack (Fig. 7.6(b)). The activation record for r contains space                
for local variable i. Recall that the top of stack is at the bottom of diagrams. When control returns                 
from this activation, its record is popped, leaving just the record for main on the stack. 

  

Control then reaches the call to q (quicksort) with actual parameters 1 and 9, and an activation               
record for this call is placed on the top of the stack, as in Fig. 7.6(c). The activation record                   
for q contains space for the parameters m and n and the local variable i, following the general          
layout in Fig. 7.5. Notice that space once used by the call of r is reused on the stack. No trace of                      
data local to r will be available to q(l, 9). When q(l, 9) returns, the stack again has only the                
activation record for main. 



Several activations occur between the last two snapshots in Fig. 7.6. A recursive call to g(l,3)                
was made. Activations p ( l , 3 ) and q(l,0) have begun and ended during the lifetime of q(l, 3),                     
leaving the activation record for q(l, 3) on top (Fig. 7.6(d)). Notice that when a procedure is                 
recursive, it is normal to have several of its activation records on the stack at the same time. • 

  

3. Calling Sequences 

  

Procedure calls are implemented by what are known as calling sequences, which consists of code             
that allocates an activation record on the stack and enters information into its fields. A return               
sequence is similar code to restore the state of the machine so the calling procedure can continue                
its execution after the call. 

  

Calling sequences and the layout of activation records may differ greatly, even among             
implementations of the same language. The code in a calling se-quence is often divided between               
the calling procedure (the "caller") and the procedure it calls (the "callee"). There is no exact                
division of run-time tasks between caller and callee; the source language, the target machine, and               
the op-erating system impose requirements that may favor one solution over another. In general,              
if a procedure is called from n different points, then the portion of the calling sequence assigned               
to the caller is generated n times. However, the portion assigned to the callee is generated only                 
once. Hence, it is desirable to put as much of the calling sequence into the callee as possible —                   
whatever the callee can be relied upon to know. We shall see, however, that the callee cannot                 
know everything. 

  

  

When designing calling sequences and the layout of activation records, the following principles             
are helpful: 

  

1.                 Values communicated between caller and callee are generally placed at the           
beginning of the callee's activation record, so they are as close as possible to the caller's                
activation record. The motivation is that the caller can compute the values of the actual               
parameters of the call and place them on top of its own activation record, without having to                 
create the entire activation record of the callee, or even to know the layout of that record. 

2.                 Moreover, it allows for the use of procedures that do not always take the same                
number or type of arguments, such as C's p r i n t f function. The callee knows where to place                     
the return value, relative to its own activation record, while however many arguments are              
present will appear sequentially below that place on the stack. 

3.          Fixed-length items are generally placed in the middle. From Fig. 7.5, such items             
typically include the control link, the access link, and the machine status fields. If exactly the                
same components of the machine status are saved for each call, then the same code can do the                  



saving and restoring for each. Moreover, if we standardize the machine's status information, then              
programs such as debuggers will have an easier time deciphering the stack contents if an error                
occurs. 

  

  

Items whose size may not be known early enough are placed at the end of the activation record.                  
Most local variables have a fixed length, which can be determined by the compiler by examining                
the type of the variable. However, some local variables have a size that cannot be determined                
until the program executes; the most common example is a dynamically sized array, where the               
value of one of the callee's parameters determines the length of the array. Moreover, the amount                
of space needed for tempo-raries usually depends on how successful the code-generation phase is              
in keeping temporaries in registers. Thus, while the space needed for tem-poraries is eventually              
known to the compiler, it may not be known when the intermediate code is first generated. 

  

4. We must locate the top-of-stack pointer judiciously. A common approach is to have it point to                 
the end of the fixed-length fields in the activation record. Fixed-length data can then be accessed                
by fixed offsets, known to the intermediate-code generator, relative to the top-of-stack pointer. A              
consequence of this approach is that variable-length fields in the activation records are actually              
"above" the top-of-stack. Their offsets need to be calculated at run time, but they too can be                 
accessed from the top-of-stack pointer, by using a positive offset. 

  

 



An example of how caller and callee might cooperate in managing the stack is suggested by Fig.                 
7.7. A register topsp points to the end of the machine-status field in the current top activation                 
record. This position within the callee's activation record is known to the caller, so the caller can                 
be made responsible for setting topsp before control is passed to the callee. The calling               
sequence and its division between caller and callee is as follows: 

  

1.  The caller evaluates the actual parameters. 

            The caller stores a return address and the old value of topsp into the callee's activation              
record. The caller then increments topsp to the po-sition shown in Fig. 7.7. That is, topsp is             
moved past the caller's local data and temporaries and the callee's parameters and status fields. 

  

            The callee saves the register values and other status information. 

  

            The callee initializes its local data and begins execution. 

  

A suitable, corresponding return sequence is: 

  

1. The callee places the return value next to the parameters, as in Fig. 7.5. 

  

2. Using information in the machine-status field, the callee restores topsp and other registers, and             
then branches to the return address that the caller placed in the status field. 

  

3.    Although topsp has been decremented, the caller knows where the return value is, relative to             
the current value of topsp; the caller therefore may use that value. 

  

The above calling and return sequences allow the number of arguments of the called procedure               
to vary from call to call (e.g., as in C's p r i n t f function). Note that at compile time, the target                        
code of the caller knows the number and types of arguments it is supplying to the callee. Hence                  
the caller knows the size of the parameter area. The target code of the callee, however, must be                  
prepared to handle other calls as well, so it waits until it is called and then examines the                  
parameter field. Using the organization of Fig. 7.7, information describing the parameters must             
be placed next to the status field, so the callee can find it. For example, in the p r i n t f function                        
of C, the first argument describes the remaining arguments, so once the first argument has been                
located, the caller can find whatever other arguments there are. 

  

  



4. Variable-Length Data on the Stack 

  

The run-time memory-management system must deal frequently with the allo-cation of space for             
objects the sizes of which are not known at compile time, but which are local to a procedure and                   
thus may be allocated on the stack. In modern languages, objects whose size cannot be               
determined at compile time are allocated space in the heap, the storage structure that we discuss                
in Section 7.4. However, it is also possible to allocate objects, arrays, or other structures of                
unknown size on the stack, and we discuss here how to do so. The reason to prefer placing                  
objects on the stack if possible is that we avoid the expense of garbage collecting their space.                 
Note that the stack can be used only for an object if it is local to a procedure and becomes                    
inaccessible when the procedure returns. 

  

  

A common strategy for allocating variable-length arrays (i.e., arrays whose size depends on the              
value of one or more parameters of the called procedure) is shown in Fig. 7.8. The same scheme                 
works for objects of any type if they are 

  

local to the procedure called and have a size that depends on the parameters of the call. 

  

In Fig. 7.8, procedure p has three local arrays, whose sizes we suppose cannot be determined at               
compile time. The storage for these arrays is not part of the activation record for p, although it                  
does appear on the stack. Only a pointer to the beginning of each array appears in the activation                  
record itself. Thus, when p is executing, these pointers are at known offsets from the top-of-stack              
pointer, so the target code can access array elements through these pointers. 



 

Also shown in Fig. 7.8 is the activation record for a procedure q, called by p. The activation                  
record for q begins after the arrays of p, and any variable-length arrays of q are located beyond                  
that . Access to  the  data on the stack is through two pointers, top  and topsp. 

Here, top marks the actual top of stack; it points to the position at which the next activation                  
record will begin. The second, topsp is used to find local, fixed-length fields of the top                
activation record. For consistency with Fig. 7.7, we shall suppose that topsp points to the end of                 
the machine-status field. In Fig. 7.8, topsp points to the end of this field in the activation record                  
for q. From there, we can find the control-link field for q, which leads us to the place in the                    
activation record for p where topsp pointed when p was on top. The code to reposition top and                   
topsp  can be generated  at  compile  time, 

in terms of sizes that will become known at run time. When q returns, topsp can be restored                  
from the saved control link in the activation record for q. The new value of top is (the old               
unrestored value of) topsp minus the length of the machine-status, control and access link,            
return-value, and parameter fields (as in Fig. 7.5) in q's activation record. This length is known at                 
compile time to the caller, although it may depend on the caller, if the number of parameters can                  
vary across calls to q. 

  



  

5. Exercises for Section 7.2 

  

Exercise 7 . 2 . 1 : Suppose that the program of Fig. 7.2 uses a partition function that always                
picks a[m] as the separator v. Also, when the array a[m],... ,a[n] is reordered, assume that the           
order is preserved as much as possible. That is, first come all the elements less than v, in their                 
original order, then all elements equal to v, and finally all elements greater than v, in their             
original order. 

  

            Draw the activation tree when the numbers 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 are sorted. 

  

            What is the largest number of activation records that ever appear together on the stack? 

  

  

Exercise 7 . 2 . 2:  Repeat Exercise 7.2.1 when the initial order of the numbers 

  

is  1,3,5,7,9,2,4,6,8. 

  

Exercise 7 . 2 . 3 : In Fig. 7.9 is C code to compute Fibonacci numbers recur-sively. Suppose                  
that the activation record for / includes the following elements in order: (return value, argument               
n, local s, local t); there will normally be other elements in the activation record as well. The              
questions below assume that the initial call is / ( 5 ) . 

  

  

            Show the complete activation tree. 

  

            What does the stack and its activation records look like the first time / ( l ) is about to                    
return? 

  

c)  What does the stack and its activation records look like the fifth time / ( l ) is about to return? 

  

Exercise 7 . 2 . 4:  Here is a sketch of two C functions / and g: 

  



int f(int x)  { int i; ••• return i+1; ••• } 

  

int g(int y)  { int j; ••• f(j+D ••• 1 

  

That is, function g calls /. Draw the top of the stack, starting with the acti-vation record               
for g, after g calls /, and / is about to return. You can consider only return values, parameters,               
control links, and space for local variables; you do not have to consider stored state or temporary                 
or local values not shown in the code sketch. However, you should indicate: 

 

  

            Which function creates the space on the stack for each element? 

  

            Which function writes the value of each element? 

  

            To which activation record does the element belong? 

Exercise 7.2.5 : In a language that passes parameters by reference, there is a that does the                 
function f(x,y) following: 

 

If a is assigned the value 3, and then f ( a , a) is called, what is returned? 

  

Exercise 7 . 2 . 6 :  The C function f is defined by: 



 

Variable a is a pointer to 6; variable 6 is a pointer to c, and c is an integer currently with value 4.                       
If we call f ( c , 6, a), what is returned? 
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In this section, we consider how procedures access their data. Especially im-portant is the              
mechanism for finding data used within a procedure p but that does not belong to p. Access             
becomes more complicated in languages where procedures can be declared inside other            
procedures. We therefore begin with the simple case of C functions, and then introduce a               
language, ML, that permits both nested function declarations and functions as "first-class            
objects;" that is, functions can take functions as arguments and return functions as values. This               
capability can be supported by modifying the implementation of the run-time stack, and we shall               
consider several options for modifying the stack frames of Section 7.2. 

1. Data Access Without Nested Procedures 

  

In the C family of languages, all variables are defined either within a single function or outside                 
any function ("globally"). Most importantly, it is impossible to declare one procedure whose             
scope is entirely within another procedure. Rather, a global variable v has a scope consisting of              
all the functions that follow the declaration of v, except where there is a local definition of the                



identifier v. Variables declared within a function have a scope consisting of that function only, or              
part of it, if the function has nested blocks, as discussed in Section 1.6.3. 

  

For languages that do not allow nested procedure declarations, allocation of storage for variables              
and access to those variables is simple: 

  

            Global variables are allocated static storage. The locations of these vari-ables remain            
fixed and are known at compile time. So to access any variable that is not local to the currently                   
executing procedure, we simply use the statically determined address. 

  

2. Any other name must be local to the activation at the top of the stack. 

We may access these variables through the  topsp pointer of the stack. 

  

An important benefit of static allocation for globals is that declared proce-dures may be passed               
as parameters or returned as results (in C, a pointer to the function is passed), with no substantial                  
change in the data-access strategy. With the C static-scoping rule, and without nested procedures,              
any name non-local to one procedure is nonlocal to all procedures, regardless of how they are                
activated. Similarly, if a procedure is returned as a result, then any nonlocal name refers to the                 
storage statically allocated for it. 

  

2. Issues With Nested Procedures 

  

Access becomes far more complicated when a language allows procedure dec-larations to be             
nested and also uses the normal static scoping rule; that is, a procedure can access variables of                 
the procedures whose declarations surround its own declaration, following the nested scoping            
rule described for blocks in Section 1.6.3. The reason is that knowing at compile time that the                 
declaration of p is immediately nested within q does not tell us the relative positions of their             
activation records at run time. In fact, since either p or q or both may be recursive, there may be                
several activation records of p and/or q on the stack. 

  

Finding the declaration that applies to a nonlocal name x in a nested pro-cedure p is a static              
decision; it can be done by an extension of the static-scope rule for blocks. Suppose x is declared                
in the enclosing procedure q. Finding the relevant activation of q from an activation of p is a            
dynamic decision; it re-quires additional run-time information about activations. One possible           
solution to this problem is to use "access links," which we introduce in Section 7.3.5. 

  

3. A Language With Nested Procedure Declarations 



  

The C family of languages, and many other familiar languages do not support nested procedures,               
so we introduce one that does. The history of nested pro-cedures in languages is long. Algol 60,                 
an ancestor of C, had this capability, as did its descendant Pascal, a once-popular teaching               
language. Of the later languages with nested procedures, one of the most influential is ML, and it                 
is this language whose syntax and semantics we shall borrow (see the box on "More about ML"                 
for some of the interesting features of ML): 

  

  

            ML is a functional language, meaning that variables, once declared and initialized, are           
not changed. There are only a few exceptions, such as the 

  

array, whose elements can be changed by special function calls. 

  

• Variables are defined, and have their unchangeable values initialized, by a statement of the               
form: 

  

v a l (name) = (expression) 

  

•  Functions are defined using the syntax: 

  

fun (name)  ( (arguments) )                   = (body) 

  

•  For function bodies we shall use let-statements of the form: 

  

let (list of definitions) in (statements) end The definitions are normally v a l or fun statements.                 
The scope of each such definition consists of all following definitions, up to the in, and all the                  
statements up to the end. Most importantly, function definitions can be nested. For example, the               
body of a function p can contain a let-statement that includes the definition of another (nested)                
function q. Similarly, q can have function definitions within its own body, leading to arbitrarily               
deep nesting of function 

  

4. Nesting Depth 

  



Let us give nesting depth 1 to procedures that are not nested within any other procedure. For               
example, all C functions are at nesting depth 1. However, if a procedure p is defined immediately               
within a procedure at nesting depth i, then give p the nesting depth i + 

  

  

E x a m p l e 7 . 5: Figure 7.10 contains a sketch in ML of our running quicksort example. The                     
only function at nesting depth 1 is the outermost function, sort, which reads an array a of 9                
integers and sorts them using the quicksort algo-rithm. Defined within sort, at line (2), is the              
array a itself. Notice the form of the ML declaration. The first argument of a r r a y says we want                    
the array to have 11 elements; all ML arrays are indexed by integers starting with 0, so this array                   
is quite similar to the C array a from Fig. 7.2. The second argument of a r r a y says that initially,                     
all elements of the array a hold the value 0. This choice of initial value lets the ML compiler                 
deduce that a is an integer array, since 0 is an integer, so we never have to declare a type for a. 

  

More About ML 

  

In addition to being almost purely functional, ML presents a number of other surprises to the                
programmer who is used to C and its family. 

  

            ML supports higher-order functions. That is, a function can take functions as arguments,           
and can construct and return other func-tions. Those functions, in turn, can take functions as               
arguments, to any level. 

  

  

ML has essentially no iteration, as in C's for- and while-statements, for instance. Rather, the               
effect of iteration is achieved by recur sion. This approach is essential in a functional language,                
since we cannot change the value of an iteration variable like i in " f o r ( i = 0 ; i<10; i++)" of C.                          
Instead, ML would make i a function argument, and the function would call itself with               
progressively higher values of i until the limit was reached. 

• ML supports lists and labeled tree structures as primitive data types. 

 ML does not require declaration of variable types. Rather, it deduces types at compile time, and                
treats it as an error if it cannot. For example, v a l x = 1 evidently makes x have integer type, and                       
if we also see v a l y = 2*x, then we know y is also an integer. 

  

Also declared within sort are several functions: readArray, exchange, and quicksort. On lines (4)        
and (6) we suggest that readArray and exchange each access the array a. Note that in ML, array           
accesses can violate the functional nature of the language, and both these functions actually              
change values of a's elements, as in the C version of quicksort. Since each of these three                 



functions is defined immediately within a function at nesting depth 1, their nesting depths are all                
2. 

  

  

Lines (7) through (11) show some of the detail of quicksort. Local value v, the pivot for the                  
partition, is declared at line (8). Function partition is defined at line (9). In line (10) we suggest                  
that partition accesses both the array a and the pivot value v, and also calls the function                 
exchange. Since partition is defined immediately within a function at nesting depth 2, it is at                
depth 3. Line 

 

(11) suggests that quicksort accesses variables a and v, the function partition, and itself              
recursively.  

  

Line (12) suggests that the outer function sort accesses a and calls the two procedures readArray                
and quicksort. • 

  

5. Access Links 

  

A direct implementation of the normal static scope rule for nested functions is obtained by               
adding a pointer called the access link to each activation record. If procedure p is nested            



immediately within procedure q in the source code, then the access link in any activation             
of p points to the most recent activation of q. Note that the nesting depth of q must be exactly              
one less than the nesting depth of p. Access links form a chain from the activation record at the                   
top of the stack to a sequence of activations at progressively lower nesting depths. Along this                
chain are all the activations whose data and procedures are accessible to the currently executing               
procedure. 

  

Suppose that the procedure p at the top of the stack is at nesting depth np, and p needs to              
access x, which is an element defined within some procedure q that surrounds p and has nesting             
depth nq. Note that nq =< np, with equality only if p and q are the same procedure. To find x, we                      
start at the activation record for p at the top of the stack and follow the access link np — nq                     
times, from activation record to activation record. Finally, we wind up at an activation record for                
q, and it will always be the most recent (highest) activation record for q that currently appears on                
the stack. This activation record contains the element x that we want. Since the compiler knows              
the layout of activation records, x will be found at some fixed offset from the position in g's                
activation record that we can reach by following the last access link. 

  

E x a m p l e 7 . 6 : Figure 7.11 shows a sequence of stacks that might result from execution of                        
the function sort of Fig. 7.10. As before, we represent function names by their first letters, and               
we show some of the data that might appear in the various activation records, as well as the                  
access link for each activation. In Fig. 7.11(a), we see the situation after sort has             
called readArray to load input into the array a and then called quicksort(l, 9) to sort the array.            
The access link from quicksort(l, 9) points to the activation record for sort, not          
because sort called quicksort but because sort is the most closely nested function       
surrounding quicksort in the program of Fig. 7.10. 



 

In successive steps of Fig. 7.11 we see a recursive call to quicksort(l, 3), followed by a call                
to partition, which calls exchange. Notice that quicksort(l, 3)'s access link points to sort, for the        
same reason that quicksort(l, 9)'s does. 

  

In Fig. 7.11(d), the access link for exchange bypasses the activation records          
for quicksort and partition, since exchange is nested immediately within sort. That arrangement     
is fine, since exchange needs to access only the array a, and the two elements it must swap are               
indicated by its own parameters i and j. 

  

6. Manipulating Access Links 

  

How are access links determined? The simple case occurs when a procedure call is to a particular                 
procedure whose name is given explicitly in the procedure call. The harder case is when the call                 
is to a procedure-parameter; in that case, the particular procedure being called is not known until                
run time, and the nesting depth of the called procedure may differ in different executions of the                 
call. Thus, let us first consider what should happen when a procedure q calls            
procedure p, explicitly. There are three cases: 

  

  



1. Procedure p is at a higher nesting depth than q. Then p must be defined immediately             
within q, or the call by q would not be at a position that is within the scope of the procedure                 
name p. Thus, the nesting depth of p is exactly one greater than that of q, and the access link              
from p must lead to q. It is a simple matter for the calling sequence to include a step that places                
in the access link for p a pointer to the activation record of q. Examples include the call              
of quicksort by sort to set up Fig. 7.11(a), and the call of partition by quicksort to create Fig.           
7.11(c). 

  

  

            The call is recursive, that is, p = q2 Then the access link for the new acti-vation record is                 
the same as that of the activation record below it. An ex- 

  

ample is the call of quicksort(l, 3) by quicksort(l, 9) to set up Fig. 7.11(b). 

  

3. The nesting depth np of p is less than the nesting depth nq of q. In order for the call within q to                        
be in the scope of name p, procedure q must be nested within some procedure r, while p is a                    
procedure defined immediately within r. The top activation record for r can therefore be found by                
following the chain of access links, starting in the activation record for q, for nq — np + 1 hops.                    
Then, the access link for p must go to this activation of r. 

Example 7 . 7: For an example of case (3), notice how we-go from Fig. 7.11(c) to Fig. 7.11(d).                   
The nesting depth 2 of the called function exchange is one less than the depth 3 of the calling                   
function partition. Thus, we start at the activation record for partition and follow 3 - 2 + 1 = 2                    
access links, which takes us from partition's activation record to that of quicksort(l,S) to that of                
sort. 

The access link for exchange therefore goes to the activation record for sort, as we see in Fig.                  
7.11(d). 

An equivalent way to discover this access link is simply to follow access links for n q - n p hops,                
and copy the access link found in that record. In our example, we would go one hop to the                   
activation record for quicksort(l, 3) and copy its access link to sort. Notice that this access link is              
correct for exchange, even though exchange is not in the scope of quicksort, these being sibling          
functions nested within sort. 

  

7. Access Links for Procedure Parameters 

  

When a procedure p is passed to another procedure q as a parameter, and q then calls its            
parameter (and therefore calls p in this activation of q), it is possible that q does not know the             
context in which p appears in the program. If so, it is impossible for q to know how to set the                 
access link for p. The solution to this problem is as follows: when procedures are used as               



parameters, the caller needs to pass, along with the name of the procedure-parameter, the proper               
access link for that parameter. 

  

The caller always knows the link, since if p is passed by procedure r as an actual parameter,              
then p must be a name accessible to r, and therefore, r can determine the access link for p exactly                
as if p were being called by r directly. That is, we use the rules for constructing access links               
given in Section 7.3.6. 

  

E x a m p l e 7 . 8: In Fig. 7.12 we see a sketch of an ML function a that has functions b and c                      
nested within it. Function b has a function-valued parameter f, which it calls. Function c defines              
within it a function d, and c then calls b with actual parameter d. 

 

Let us trace what happens when a is executed. First, a calls c, so we place an activation record               
for c above that for a on the stack. The access link for c points to the record for a, since c is                     
defined immediately within a. Then c calls b(d). The calling sequence sets up an activation           
record for b, as shown in Fig. 7.13(a). 

  

Within this activation record is the actual parameter d and its access link, which together form              
the value of formal parameter f in the activation record for b. Notice that c knows about d, since                   
d is defined within c, and therefore c passes a pointer to its own activation record as the access                   
link. No matter where d was defined, if c is in the scope of that definition, then one of the three                     
rules of Section 7.3.6 must apply, and c can provide the link. 



 

Now, let us look at what b does. We know that at some point, it uses its parameter f, which has                   
the effect of calling d. An activation record for d appears on the stack, as shown in Fig. 7.13(b).               
The proper access link to place in this activation record is found in the value for parameter /; the                   
link is to the activation record for c, since c immediately surrounds the definition of d. Notice               
that b is capable of setting up the proper link, even though b is not in the scope of c's definition. • 

  

  

8. Displays 

  

One problem with the access-link approach to nonlocal data is that if the nesting depth gets large,                 
we may have to follow long chains of links to reach the data we need. A more efficient                  
implementation uses an auxiliary array d, called the display, which consists of one pointer for           
each nesting depth. We arrange that, at all times, d[i] is a pointer to the highest activation record               
on the stack for any procedure at nesting depth i. Examples of a display are shown in Fig. 7.14. 

For instance, in Fig. 7.14(d), we see the display d, with d[l] holding a pointer to the activation                  
record for sort , the highest (and only) activation record for a function at nesting depth 1. Also,                  
d[2] holds a pointer to the activation record for exchange, the highest record at depth 2, and d[3]                  
points to partition, the highest record at depth 3. 

The advantage of using a display is that if procedure p is executing, and it needs to access                
element x belonging to some procedure q, we need to look only in d[i], where i is the nesting           
depth of q; we follow the pointer d[i] to the activation record for q, wherein x is found at a            
known offset. The compiler knows what i is, so it can generate code to access x using d[i] and             
the offset of 



 

x from the top of the activation record for q. Thus, the code never needs to follow a long chain of                 
access links. 

  

In order to maintain the display correctly, we need to save previous values of display entries in                 
new activation records. If procedure p at depth np is called, and its activation record is not the              
first on the stack for a procedure at depth np, then the activation record for p needs to hold the                
previous value of d[np], while d[np] itself is set to point to this activation of p. When p returns,           
and its activation record is removed from the stack, we restore d[np] to have its value prior to the                 
call of p. 

Example 7.9 : Several steps of manipulating the display are illustrated in Fig. 7.14. In Fig.                
7.14(a), sort at depth 1 has called quicksort(l, 9) at depth 2. 



The activation record for quicksort has a place to store the old value of d[2], indicated as saved             
d[2], although in this case since there was no prior activation record at depth 2, this pointer is                 
null. 

  

In Fig. 7.14(b), quicksort(l, 9) calls quicksort(l, 3). Since the activation records for both calls are            
at depth 2, we must store the pointer to quicksort(l, 9), which was in d[2], in the record              
for quicksort(l, 3). Then, d[2] is made to point to      quicksort(l,  3). 

  

Next, partition is called. This function is at depth 3, so we use the slot d[3] in the display for the                 
first time, and make it point to the activation record for partition. The record for partition has a              
slot for a former value of d[3], but in this case there is none, so the pointer remains null. The                 
display and stack at this time are shown in Fig. 7.14(c). 

Then, partition calls exchange. That function is at depth 2, so its activation record stores the old                 
pointer d[2], which goes to the activation record for quicksort(l, 3). Notice that the display               
pointers "cross"; that is, d[3] points further down the stack than d[2] does. However, that is a                 
proper situation; exchange can only access its own data and that of sort, via d[l]. 

  

9. Exercises for Section 7.3 

  

Exercise 7.3.1 : In Fig. 7.15 is a ML function main that computes Fibonacci numbers in a                 
nonstandard way. Function f ibO will compute the nth Fibonacci number for any n > 0. Nested                 
within in is f i b l , which computes the nth Fibonacci number on the assumption n > 2, and                     
nested within f i b l is f ib2, which assumes n > 4. Note that neither f i b l nor f ib2 need to check                           
for the basis cases. Show the stack of activation records that result from a call to main, up until                   
the time that the first call (to f i b O ( l ) ) is about to return. Show the access link in each of the                           
activation records on the stack. 

  

Exercise 7.3.2 : Suppose that we implement the functions of Fig. 7.15 using a display. Show the                 
display at the moment the first call to f i b O ( l ) is about to return. Also, indicate the saved                       
display entry in each of the activation records on the stack at that time. 
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The heap is the portion of the store that is used for data that lives indefinitely, or until the                   
program explicitly deletes it. While local variables typically become inaccessible when their            
procedures end, many languages enable us to create objects or other data whose existence is not                
tied to the procedure activation that creates them. For example, both C + + and Java give the                  
programmer new to create objects that may be passed — or pointers to them may be passed —                  
from procedure to procedure, so they continue to exist long after the procedure that created them                
is gone. Such objects are stored on a heap. 

  



In this section, we discuss the memory manager, the subsystem that allo-cates and deallocates            
space within the heap; it serves as an interface between application programs and the operating               
system. For languages like C or C + + that deallocate chunks of storage manually (i.e., by               
explicit statements of the program, such as f r e e or delete ) , the memory manager is also                    
responsible for implementing deallocation. 

  

In Section 7.5, we discuss garbage collection, which is the process of finding spaces within the              
heap that are no longer used by the program and can therefore be reallocated to house other data                  
items. For languages like Java, it is the garbage collector that deallocates memory. When it is                
required, the garbage collector is an important subsystem of the memory manager. 

  

  

1. The Memory Manager 

  

The memory manager keeps track of all the free space in heap storage at all times. It performs                  
two basic functions: 

  

• Allocation. When a program requests memory for a variable or object,3 the memory manager             
produces a chunk of contiguous heap memory of the requested size. If possible, it satisfies an                
allocation request using free space in the heap; if no chunk of the needed size is available, it                  
seeks to increase the heap storage space by getting consecutive bytes of virtual memory from the                
operating system. If space is exhausted, the memory manager passes that information back to the               
application program. 

  

• Deallocation. The memory manager returns deallocated space to the pool of free space, so it              
can reuse the space to satisfy other allocation requests. Memory managers typically do not return               
memory to the operating sys-tem, even if the program's heap usage drops. 

  

Memory management would be simpler if (a) all allocation requests were for chunks of the                
same size, and (b) storage were released predictably, say, first-allocated first-deallocated.           
There are some languages, such as Lisp, for which condition (a) holds; pure Lisp uses only                
one data element — a two- pointer cell — from which all data structures are built.  Condition                 
(b) also holds in some situations, the most common being data that can be allocated on the                 
run-time stack. However, in most languages, neither (a) nor (b) holds in general. Rather, data               
elements of different sizes are allocated, and there is no good way to predict the lifetimes of all                  
allocated objects. 

  



Thus, the memory manager must be prepared to service, in any order, allo-cation and              
deallocation requests of any size, ranging from one byte to as large as the program's entire                
address space. 

  

Here are the properties we desire of memory managers: 

• Space Efficiency. A memory manager should minimize the total heap space needed by a               
program. Doing so allows larger programs to run in a fixed virtual address space. Space               
efficiency is achieved by minimizing "fragmentation," discussed in Section 7.4.4. 

  

• Program Efficiency. A memory manager should make good use of the memory subsystem to             
allow programs to run faster. As we shall see in Section 7.4.2, the time taken to execute an                  
instruction can vary widely depending on where objects are placed in memory. Fortunately,             
programs tend to exhibit "locality," a phenomenon discussed in Section 7.4.3, which refers to the               
nonrandom clustered way in which typical programs access memory. By attention to the             
placement of objects in memory, the memory manager can make better use of space and,               
hopefully, make the program run faster. 

• Low Overhead. Because memory allocations and deallocations are fre-quent operations in           
many programs, it is important that these operations be as efficient as possible. That is, we wish                 
to minimize the overhead — the fraction of execution time spent performing allocation and            
dealloca-tion. Notice that the cost of allocations is dominated by small requests; the overhead of               
managing large objects is less important, because it usu-ally can be amortized over a larger               
amount of computation. 

  

  

2. The Memory Hierarchy of a Computer 

  

Memory management and compiler optimization must be done with an aware-ness of how             
memory behaves. Modern machines are designed so that program-mers can write correct            
programs without concerning themselves with the details of the memory subsystem. However,            
the efficiency of a program is determined not just by the number of instructions executed, but                
also by how long it takes to execute each of these instructions. The time taken to execute an                  
instruction can vary significantly, since the time taken to access different parts of memory can               
vary from nanoseconds to milliseconds. Data-intensive programs can there-fore benefit          
significantly from optimizations that make good use of the memory subsystem. As we shall see               
in Section 7.4.3, they can take advantage of the phenomenon of "locality" — the nonrandom               
behavior of typical programs. 

The large variance in memory access times is due to the fundamental limitation in hardware               
technology; we can build small and fast storage, or large and slow storage, but not storage that is                  
both large and fast. It is simply impossible today to build gigabytes of storage with nanosecond                
access times, which is how fast high-performance processors run. Therefore, practically all            



modern computers arrange their storage as a memory hierarchy. A memory hierarchy, as shown              
in Fig. 7.16, consists of a series of storage elements, with the smaller faster ones "closer" to the                  
processor, and the larger slower ones further away. 

Typically, a processor has a small number of registers, whose contents are under software              
control. Next, it has one or more levels of cache, usually made out of static RAM, that are                  
kilobytes to several megabytes in size. The next level of the hierarchy is the physical (main)                
memory, made out of hundreds of megabytes or gigabytes of dynamic RAM. The physical              
memory is then backed up by virtual memory, which is implemented by gigabytes of disks.               
Upon a memory access, the machine first looks for the data in the closest (lowest-level) storage                
and, if the data is not there, looks in the next higher level, and so on. 

  

Registers are scarce, so register usage is tailored for the specific applications and managed by the                
code that a compiler generates. All the other levels of the hierarchy are managed automatically;               
in this way, not only is the programming task simplified, but the same program can work                
effectively across machines with different memory configurations. With each memory access,           
the machine searches each level of the memory in succession, starting with the lowest level, until                
it locates the data. Caches are managed exclusively in hardware, in order to keep up with the                 
relatively fast RAM access times. Because disks are rela 

 

tively slow, the virtual memory is managed by the operating system, with the assistance of a                
hardware structure known as the "translation lookaside buffer." 

  



Data is transferred as blocks of contiguous storage. To amortize the cost of access, larger blocks                
are used with the slower levels of the hierarchy. Be-tween main memory and cache, data is                
transferred in blocks known as cache lines, which are typically from 32 to 256 bytes long.             
Between virtual memory (disk) and main memory, data is transferred in blocks known            
as pages, typically between 4K and 64K bytes in size. 

  

  

3. Locality in Programs 

  

Most programs exhibit a high degree of locality; that is, they spend most of their time executing                 
a relatively small fraction of the code and touching only a small fraction of the data. We say that                    
a program has temporal locality if the memory locations it accesses are likely to be accessed                
again within a short period of time. We say that a program has spatial locality if memory               
locations close to the location accessed are likely also to be accessed within a short period of                 
time. 

  

The conventional wisdom is that programs spend 90% of their time executing 10% of the code.                
Here is why: 

  

Programs often contain many instructions that are never executed. Pro-grams built with            
components and libraries use only a small fraction of the provided functionality. Also as              
requirements change and programs evolve, legacy systems often contain many instructions that            
are no longer used. 

  

Static and Dynamic RAM 

  

Most random-access memory is dynamic, which means that it is built of very simple electronic             
circuits that lose their charge (and thus "forget" the bit they were storing) in a short time.                 
These circuits need to be refreshed — that is, their bits read and rewritten — periodically.                
On the other hand, static RAM is designed with a more complex circuit for each bit, and                 
consequently the bit stored can stay indefinitely, until it is changed. Evidently, a chip can store                
more bits if it uses dynamic-RAM circuits than if it uses static-RAM circuits, so we tend to see                  
large main memories of the dynamic variety, while smaller memories, like caches, are made              
from static circuits. 

  

  

  



  

• Only a small fraction of the code that could be invoked is actually executed in a typical run of                    
the program. For example, instructions to handle illegal inputs and exceptional cases, though             
critical to the correctness of the program, are seldom invoked on any particular run. 

  

            The typical program spends most of its time executing innermost loops and tight             
recursive cycles in a program. 

  

Locality allows us to take advantage of the memory hierarchy of a modern computer, as shown                
in Fig. 7.16. By placing the most common instructions and data in the fast-but-small storage,               
while leaving the rest in the slow-but-large storage, we can lower the average memory-access              
time of a program significantly. 

  

It has been found that many programs exhibit both temporal and spatial locality in how they                
access both instructions and data. Data-access patterns, however, generally show a greater            
variance than instruction-access patterns. Policies such as keeping the most recently used data in              
the fastest hierarchy work well for common programs but may not work well for some               
data-intensive programs — ones that cycle through very large arrays, for example. 

  

We often cannot tell, just from looking at the code, which sections of the code will be heavily                  
used, especially for a particular input. Even if we know which instructions are executed heavily,               
the fastest cache often is not large enough to hold all of them at the same time. We must                   
therefore adjust the contents of the fastest storage dynamically and use it to hold instructions that                
are likely to be used heavily in the near future. 

  

Optimization Using the  Memory Hierarchy 

The policy of keeping the most recently used instructions in the cache tends to work well; in                 
other words, the past is generally a good predictor of future memory usage. When a new                
instruction is executed, there is a high probability that the next instruction also will be               
executed. This phenomenon is an example of spatial locality. One effective technique to             
improve the spatial lo-cality of instructions is to have the compiler place basic blocks (sequences               
of instructions that are always executed sequentially) that are likely to follow each other              
contiguously — on the same page, or even the same cache line, if possi-ble. Instructions               
belonging to the same loop or same function also have a high probability of being executed                
together.4 

  

We can also improve the temporal and spatial locality of data accesses in a program by changing                 
the data layout or the order of the computation. For example, programs that visit large amounts                
of data repeatedly, each time per-forming a small amount of computation, do not perform well. It                



is better if we can bring some data from a slow level of the memory hierarchy to a faster level                    
(e.g., disk to main memory) once, and perform all the necessary computations on this data while                
it resides at the faster level. This concept can be applied recursively to reuse data in physical                 
memory, in the caches and in the registers. 

  

  

4. Reducing Fragmentation 

  

At the beginning of program execution, the heap is one contiguous unit of free space. As the                 
program allocates and deallocates memory, this space is broken up into free and used chunks of                
memory, and the free chunks need not reside in a contiguous area of the heap. We refer to the                   
free chunks of memory as holes. With each allocation request, the memory manager           
must place the requested chunk of memory into a large-enough hole. Unless a hole of exactly the               
right size is found, we need to split some hole, creating a yet smaller hole. 

  

With each deallocation request, the freed chunks of memory are added back to the pool of free                 
space. We coalesce contiguous holes into larger holes, as the holes can only get smaller               
otherwise. If we are not careful, the memory may end up getting fragmented, consisting of large                
numbers of small, noncontiguous holes. It is then possible that no hole is large enough to satisfy                 
a future request, even though there may be sufficient aggregate free space. 

  

Best - Fit  and  Next - Fit Object Placement 

We reduce fragmentation by controlling how the memory manager places new objects in the              
heap. It has been found empirically that a good strategy for mini-mizing fragmentation for              
real-life programs is to allocate the requested memory in the smallest available hole that is large                
enough. This best-fit algorithm tends to spare the large holes to satisfy subsequent, larger            
requests. An alternative, called first-fit, where an object is placed in the first (lowest-address)            
hole in which it fits, takes less time to place objects, but has been found inferior to best-fit in                   
overall performance. 

  

To implement best-fit placement more efficiently, we can separate free space           
into bins, according to their sizes. One practical idea is to have many more bins for the smaller                
sizes, because there are usually many more small objects. For example, the Lea memory              
manager, used in the GNU C compiler gcc, aligns all chunks to 8-byte boundaries. There is a bin                  
for every multiple of 8-byte chunks from 16 bytes to 512 bytes. Larger-sized bins are               
logarithmically spaced (i.e., the minimum size for each bin is twice that of the previous bin), and                 
within each of these bins the chunks are ordered by their size. There is always a chunk of free                   
space that can be extended by requesting more pages from the operating system. Called              



the wilderness chunk, this chunk is treated by Lea as the largest-sized bin because of its              
extensibility. 

  

Binning makes it easy to find the best-fit chunk. 

  

            If, as for small sizes requested from the Lea memory manager, there is a bin for chunks                 
of that size only, we may take any chunk from that bin. 

  

            For sizes that do not have a private bin, we find the one bin that is allowed to include                   
chunks of the desired size. Within that bin, we can use 

  

either a first-fit or a best-fit strategy; i.e., we either look for and select the first chunk that is                   
sufficiently large or, we spend more time and find the smallest chunk that is sufficiently large.                
Note that when the fit is not exact, the remainder of the chunk will generally need to be placed in                    
a bin with smaller sizes.  

• However, it may be that the target bin is empty, or all chunks in that bin are too small to satisfy                      
the request for space. In that case, we simply repeat the search, using the bin for the next larger                   
size(s). Eventually, we either find a chunk we can use, or we reach the "wilderness" chunk,                
from which we can surely obtain the needed space, possibly by going to the operating system                
and getting additional pages for the heap. 

While best-fit placement tends to improve space utilization, it may not be the best in terms of                 
spatial locality. Chunks allocated at about the same time by a program tend to have similar                
reference patterns and to have similar lifetimes. Placing them close together thus improves the              
program's spatial locality. One useful adaptation of the best-fit algorithm is to modify the              
placement in the case when a chunk of the exact requested size cannot be found. In this case, we                   
use a next-fit strategy, trying to allocate the object in the chunk that has last been split, whenever                
enough space for the new object remains in that chunk. Next-fit also tends to improve the speed                 
of the allocation operation. 

  

  

M a n a g i n g and  Coalescing Free  Space 

  

When an object is deallocated manually, the memory manager must make its chunk free, so it                
can be allocated again. In some circumstances, it may also be possible to combine (coalesce) that              
chunk with adjacent chunks of the heap, to form a larger chunk. There is an advantage to doing                  
so, since we can always use a large chunk to do the work of small chunks of equal total size, but                     
many small chunks cannot hold one large object, as the combined chunk could. 



  

If we keep a bin for chunks of one fixed size, as Lea does for small sizes, then we may prefer not                      
to coalesce adjacent blocks of that size into a chunk of double the size. It is simpler to keep all                    
the chunks of one size in as many pages as we need, and never coalesce them. Then, a simple                   
allocation/deallocation scheme is to keep a bitmap, with one bit for each chunk in the bin. A 1                  
indicates the chunk is occupied; 0 indicates it is free. When a chunk is deallocated, we change its                  
1 to a 0. When we need to allocate a chunk, we find any chunk with a 0 bit, change that bit to a 1,                         
and use the corresponding chunk. If there are no free chunks, we get a new page, divide it into                   
chunks of the appropriate size, and extend the bit vector. 

  

Matters are more complex when the heap is managed as a whole, without binning, or if we are                  
willing to coalesce adjacent chunks and move the resulting chunk to a different bin if necessary.                
There are two data structures that are useful to support coalescing of adjacent free blocks: 

  

• Boundary Tags. At both the low and high ends of each chunk, whether free or allocated, we                  
keep vital information. At both ends, we keep a free/used bit that tells whether or not the block is                   
currently allocated (used) or available (free). Adjacent to each free/used bit is a count of the total                 
number of bytes in the chunk. 

• A Doubly Linked, Embedded Free List. The free chunks (but not the allocated chunks) are also                 
linked in a doubly linked list. The pointers for this list are within the blocks themselves, say                 
adjacent to the boundary tags at either end. Thus, no additional space is needed for the free list,                  
although its existence does place a lower bound on how small chunks can get; they must                
accommodate two boundary tags and two pointers, even if the object is a single byte. The order                 
of chunks on the free list is left unspecified. For example, the list could be sorted by size, thus                   
facilitating best-fit placement. 

  

Example 7 . 1 0 : Figure 7.17 shows part of a heap with three adjacent chunks, A, B, and C.                     
Chunk B: of size 100, has just been deallocated and returned to the free list. Since we know the                   
beginning (left end) of 5, we also know the end of the chunk that happens to be immediately                  
to B's left, namely A in this example. The free/used bit at the right end of A is currently 0,              
so A too is free. We may therefore coalesce A and B into one chunk of 300 bytes. 

 

It might be the case that chunk C, the chunk immediately to B's right, is also free, in which                   
case we can combine all of A, B, and C. Note that if we always coalesce chunks when we can,                    



then there can never be two adjacent free chunks, so we never have to look further than the two                   
chunks adjacent to the one being deallocated. In the current case, we find the beginning of C by                
starting at the left end of B, which we know, and finding the total number of bytes in B, which is                 
found in the left boundary tag of B and is 100 bytes. With this information, we find the right end                  
of B and the beginning of the chunk to its right. At that point, we examine the free/used bit                 
of C and find that it is 1 for used; hence, C is not available for coalescing. 

  

Since we must coalesce A and B, we need to remove one of them from the free list. The doubly                
linked free-list structure lets us find the chunks before and after each of A and B. Notice that it               
should not be assumed that physical neighbors A and B are also adjacent on the free list.             
Knowing the chunks preceding and following A and B on the free list, it is straightforward to            
manipulate pointers on the list to replace A and B by one coalesced chunk. • 

  

  

Automatic garbage collection can eliminate fragmentation altogether if it moves all the allocated             
objects to contiguous storage. The interaction between garbage collection and memory           
management is discussed in more detail in Sec-tion 7.6.4. 

  

  

5. Manual Deallocation Requests 

  

We close this section with manual memory management, where the programmer must explicitly             
arrange for the deallocation of data, as in C and C + + . Ideally, any storage that will no longer be                      
accessed should be deleted. Conversely, any storage that may be referenced must not be deleted.               
Unfortunately, it is hard to enforce either of these properties. In addition to considering the               
difficulties with manual deallocation, we shall describe some of the techniques programmers use             
to help with the difficulties. 

  

Problems  with Manual Deallocation 

  

Manual memory management is error-prone. The common mistakes take two forms: failing ever             
to delete data that cannot be referenced is called a memory-leak error, and referencing deleted             
data is a dangling-pointer-dereference error. 

  

It is hard for programmers to tell if a program will never refer to some stor-age in the future, so                  
the first common mistake is not deleting storage that will never be referenced. Note that although                
memory leaks may slow down the exe-cution of a program due to increased memory usage, they                
do not affect program correctness, as long as the machine does not run out of memory. Many                 



pro-grams can tolerate memory leaks, especially if the leakage is slow. However, for             
long-running programs, and especially nonstop programs like operating systems or server code,            
it is critical that they not have leaks. 

  

Automatic garbage collection gets rid of memory leaks by deallocating all the garbage. Even              
with automatic garbage collection, a program may still use more memory than necessary. A              
programmer may know that an object will never be referenced, even though references to that               
object exist somewhere. In that case, the programmer must deliberately remove references to             
objects that will never be referenced, so the objects can be deallocated automatically. 

  

Being overly zealous about deleting objects can lead to even worse problems than memory leaks.               
The second common mistake is to delete some storage and then try to refer to the data in the                   
deallocated storage. Pointers to storage that has been deallocated are known as dangling             
pointers. Once the freed storage has been reallocated to a new variable, any read, write, or                
deallocation via the dangling pointer can produce seemingly random effects. We refer to any              
operation, such as read, write, or deallocate, that follows a pointer and tries to use the object it                  
points to, as dereferencing the pointer. 

  

Notice that reading through a dangling pointer may return an arbitrary value. Writing through a               
dangling pointer arbitrarily changes the value of the new variable. Deallocating a dangling             
pointer's storage means that the storage of the new variable may be allocated to yet another                
variable, and actions on the old and new variables may conflict with each other. 

  

Unlike memory leaks, dereferencing a dangling pointer after the freed storage is reallocated             
almost always creates a program error that is hard to debug. As a result, programmers are more                 
inclined not to deallocate a variable if they are not certain it is unreferencable. 

  

A related form of programming error is to access an illegal address. Common examples of such                
errors include dereferencing null pointers and accessing an out-of-bounds array element. It is             
better for such errors to be detected than to have the program silently corrupt the results. In fact,                  
many security violations exploit programming errors of this type, where certain program inputs             
allow unintended access to data, leading to a "hacker" taking control of the program and               
machine. One antidote is to have the compiler insert checks with every access, to make sure it is                  
within bounds. The compiler's optimizer can discover and remove those checks that are not              
really necessary because the optimizer can deduce that the access must be within bounds. 

  

An Example:  Purify 

  



Rational's Purify is one of the most popular commercial tools that helps programmers find              
memory access errors and memory leaks in programs. Purify instruments binary code by adding              
additional instructions to check for errors as the program executes. It keeps a map of memory to                 
indicate where all the freed and used spaces are. Each allocated object is bracketed with extra                
space; accesses to unallocated locations or to spaces between objects are flagged as errors. This               
approach finds some dangling pointer references, but not when the memory has been reallocated              
and a valid object is sitting in its place. This approach also finds some out-of-bound array                
accesses, if they happen to land in the space inserted at the end of the objects. 

  

  

Purify also finds memory leaks at the end of a program execution. It searches the contents of all                  
the allocated objects for possible pointer values. Any object without a pointer to it is a leaked                 
chunk of memory. Purify reports the amount of memory leaked and the locations of the leaked                
objects. We may compare Purify to a "conservative garbage collector," which will be discussed              
in Section 7.8.3. and machine. One antidote is to have the compiler insert checks with every                
access, to make sure it is within bounds. The compiler's optimizer can discover and remove those                
checks that are not really necessary because the optimizer can deduce that the access must be                
within bounds. 

  

Programming Conventions  and  Tools 

  

We now present a few of the most popular conventions and tools that have been developed to                 
help programmers cope with the complexity in managing memory: 

  

• Object ownership is useful when an object's lifetime can be statically rea-soned about. The idea               
is to associate an owner with each object at all times. The owner is a pointer to that object,                 
presumably belonging to some function invocation. The owner (i.e., its function) is responsible             
for either deleting the object or for passing the object to another owner. It is possible to have                  
other, nonowning pointers to the same object; these pointers can be overwritten any time, and no                
deletes should ever be ap-plied through them. This convention eliminates memory leaks, as well              
as attempts to delete the same object twice. However, it does not help solve the               
dangling-pointer-reference problem, because it is possible to follow a nonowning pointer to an             
object that has been deleted.  

Reference counting is useful when an object's lifetime needs to be deter-mined dynamically. The             
idea is to associate a count with each dynamically allocated object. Whenever a reference to the                
object is created, we incre-ment the reference count; whenever a reference is removed, we              
decrement the reference count. When the count goes to zero, the object can no longer be                
referenced and can therefore be deleted. This technique, however, does not catch useless, circular              
data structures, where a collection of objects cannot be accessed, but their reference counts are               
not zero, since they refer to each other. For an illustration of this problem, see Example 7.11.                 
Reference counting does eradicate all dangling-pointer references, since there are no outstanding            



references to any deleted objects. Reference counting is expensive because it imposes an             
overhead on every operation that stores a pointer.  

• Region-based allocation is useful for collections of objects whose lifetimes are tied to specific             
phases in a computation.When objects are created to be used only within some step of a                
computation, we can allocate all such objects in the same region. We then delete the entire region                 
once that computation step completes. This region-based allocation technique has limited         
applicability. However, it is very efficient whenever it can be used; instead of deallocating              
objects one at a time, it deletes all objects in the region in a wholesale fashion. 

  

  

6. Exercises for Section 7.4 

  

Exercise 7 . 4 . 1 : Suppose the heap consists of seven chunks, starting at address 0. The sizes of                   
the chunks, in order, are 80, 30, 60, 50, 70, 20, 40 bytes. When we place an object in a chunk, we                      
put it at the high end if there is enough space remaining to form a smaller chunk (so that the                    
smaller chunk can easily remain on the linked list of free space). However, we cannot tolerate                
chunks of fewer that 8 bytes, so if an object is almost as large as the selected chunk, we give it                     
the entire chunk and place the object at the low end of the chunk. 

If we request space for objects of the following sizes: 32, 64, 48, 16, in that order, what does the                    
free space list look like after satisfying the requests, if the method of selecting chunks is 

  

  

            First fit. 

  

            Best fit. 

  

 

 


